A new Closure operator-GRW-closure in Topological Spaces P.Rajarubi⁽¹⁾, N Nagaveni⁽²⁾,

Abstract

In this paper, GRW-open sets, GRW-neighbourhoods, GRW-interior and GRW-closure are introduced and some of their basic properties are studied .GRW-int(A) and GRW-Cl(A)

(ie cl^{GRW}(A)) are defined and prove that it forms a topology τ_{GRW} in X.

Key words and phrases: GRW-int(A), GRW-cl(A)($cl^{GRW}(A)$), τ_{GRW} GRW-neighborhood is abbreviated as GRW-nbd.

1 Introduction

N. Levine[11] introduced generalized closed sets in general topology as a

generalization of closed sets. This concept was found to be useful and many

results in general topology were improved. Many researchers like Balachandran,

Sundaram and Maki[3], Bhattacharyya and Lahiri[4], Arockiarani[1],

Dunham[9], Gnanambal[10], Malghan[15], Palaniappan and Rao[19], Park[20],

Arya and Gupta[2] and Devi[8] have worked on generalized closed sets, their

generalizations and related concepts in general topology.Pushpalatha and Rajarubi[21] introduced GRW-closed sets in a topological spaces .

In this section, GRW-open sets in topological spaces and obtain some of their properties. Also, GRW-neighbourhood in topological spaces by using the notion of GRW-open sets.

Moreover in this paper, the notion of GRW-interior is defined and some of its basic properties are studied. Also the concept of GRWclosure in topological spaces using the notions of GRW-closed sets, and some related results will be obtained. The τ_{GRW} is defined and prove that it forms a topology on X. For any $A \subset X$, it is proved that the complement of GRW-interior of A is the GRW-closure of the complement of A.

Throughout the paper, X and Y denote the topological spaces (X,τ) and

 $(Y,\,\sigma)$ respectively and on which no separation axioms are assumed unless

Otherwise explicitly stated. For any subset A of a space $(X,\,\tau),$ the closure of

A, interior of A, w-interior of A, w-closure of A, gpr-interior of A, gpr-closure

of A, α -closure of A, α -interior of A and the complement of A are denoted by

cl (A) or τ -cl (A), int (A) or τ -int (A), w-int (A), w-cl (A), gpr-int (A), gprcl

(A), α -int (A), α -cl (A) and A^c or X – A respectively. Sometimes (X, τ) is denoted by simply X if there is no confusion arise.

2 Preliminaries

The following definitions are used as preliminary.

Definition 2.1. A subset A of a space X is called

1) a **preopen set** [16] if $A \subseteq$ intcl (A) and a **preclosed set** if clint (A) \subseteq A.

2) a α -open set [18] if A \subseteq intclint (A) and a α -closed set if clintcl (A) \subseteq A.

3) a **regular open set** [23] if A = intcl (A) and a **regular closed set** if A = clint (A).

The intersection of all preclosed (resp. α -closed) subsets of X containing A is called pre-closure (resp. α -closure) of A and is denoted by pcl(A)(resp.

 α -cl (A)).

Definition 2.2. A subset A of a space X is called

1) generalized α -closed set (briefly, $g\alpha$ -closed) [13] if α cl (A) \subseteq U whenever

 $A \subseteq U$ and U is α -open in X.

2) α -generalized closed set (briefly, α g-closed) [14] if α cl (A) \subseteq U whenever A \subseteq U and U is open in X.

3) regular generalized closed set (briefly, rg-closed) [19] if cl (A) \subseteq U whenever A \subseteq U and U is regular open in X.

4) generalized preclosed set (briefly, gp-closed) [12] if pcl (A) \subseteq U whenever A \subseteq U and U is open in X.

5) weakely generalized closed set (briefly, wg-closed) [17] if cl int (A) \subseteq U whenever A \subseteq U and U is open in X.

6) weakely closed set (briefly, w-closed) [22] if cl (A) \subseteq U whenever A \subseteq U and U is semi open in X.

7)g-rg-closed set(rg*-closed)[21] if $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

8)**rw-closed set**[6]] if cl (A) \subset U whenever A \subset U and U is regular semi open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3. A subset A of a space X is called **regular semi open set** (briefly, RS-open) [4] if there is a regular open set U such that $U \subset A \subset cl(U)$.

Definition 2.4. A subset A of a space X is called a **generalized regular** weakly closed set (briefly,GRW-closed) [21] if $cl^*(A) \subset U$ whenever A $\subset U$ and U is regular semi open in X.

The set of all GRW-closed sets in X by GRWC(X).

Remark 2.1[21] Every w-closed set is GRW-closed .

Remark 2.2[21] Every GRW-closed set is g-rg-closed.

Remark 2.3[21] Complement of Regular semi open set is Regular semi open.

Remark2.4[21]w-int(A) = $\bigcup \{G: Gis a w - open set, G \subseteq A\}$

Remark 2.5[21] If A and B are GRW-closed sets in a topological space then $A \cup B$ is also GRW-closed set.

3.GRW-open sets and GRW-neighbourhoods.

In this section, GRW-open sets in topological spaces and obtain some of their properties. Also, GRW-neighbourhood in topological spaces by

using the notion of GRW-open sets. It will be proved that every neigh-

bourhood of x in X is GRW-neighbourhood of x but not conversely.

Definition 3.1. A subset A in X is called generalized rw-open (briefly,

GRW-open) in X if A^{C} is GRW-closed in X. The family of all GRW-open sets in X by GRWO (X).

Theorem 3.1. If a subset A of a space X is w-open then it is GRW-open

but

not conversely.

Proof. Let A be a w-open set in a space X. Then A^c is w-closed set. By

Remark 2.1 A^c is GRW-closed. Therefore A is GRW-open set in X.

The converse of the above theorem need not be true, as seen from the following example.

Example 3.1. 8 Let $X = \{a, b, c, d\}$ be with the topology

 $\tau = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}.$

GRW-open-{ {a}, {b}, {c}, {d}, {a,c}, {a, d}, {b,c}, {b,d}, {a,b,c} } GRW--closed sets { X, ϕ , {d}, {a,c}, {a, d}, {b,c}, {b,d}, {c,d}, {a, b, c, }, {a, b, d}, {a,c,d}, {b,c,d}}

W-open sets {{a,b,c}, {b,c}, {a,b}, {c}, {b}, X, ϕ } {a} is GRW-open but not w-open and not open in X.

Corollary 3.1. Every open set is GRW-open set but not conversely.

Corollary 3.2. Every regular open set is GRW-open set but not conversely.

Proof. Every regular open set is open so its complement is closed, closed sets are GRW-closed. Hence every regular open set is GRW-open.

Theorem 3.2. If a subset A of a space X is GRW-open, then it is g-rg-open set in X.

Proof. Let A be GRW-open set in space X. Then A^c is GRW-closed set in X.

By Remark 2.2 , A^c is GRW-closed then it is g-rg-closed set in X. Therefore A is g-rg-open set in space X.

The converse of the above theorem need not be true, as seen from the following example.

Example 3.2. Let $X = \{a, b, c, d, e\}$ with topology

 $\tau = \{X,\,\phi,\,\{a\}\,,\,\{d\}\,,\,\{e\}\,,\,\{a,\,d\}\,,\,\{a,\,e\}\,,\,\{d,\,e\}\,,\,\{a,\,d,\,e\}\}.$ In this topological

space the subset {a, b} is g-rg-open but not GRW-open set in X.

Theorem 3.4. If a subset A of a topological space X is RW-open, then it is

GRW-open set in X, but not conversely.

Proof. Let A be rw-open set in a space X. Then A^c is rw-closed set in X.

rw-closed set A^c is GRW-closed in X. Therefore A is GRW-open subset in X.

The converse of the above theorem need not be true, as seen from the following example.

 $\{a, b\}, \{b, c\}, \{a, b, c\}\}.$

{a,c} is GRW-open set in X, but not rw-open set .

Theorem 3.5. If A and B are GRW-open sets in a space X. Then $A \cap B$

is

also GRW-open set in X.

Proof. If A and B are GRW-open sets in a space X. Then A^c and B^c are GRW-closed sets in a space X. By $A^c \cup B^c$ is also GRW-closed set

in X. That is $A^c \cup B^c = (A \cap B)^c$ is a GRW-closed set in X. Therefore A $\cap B$

GRW-open set in X.

Example 3.4. The union of two GRW-open sets in X need not be a GRW-

open set in X.

Let X = {a, b, c, d} with topology, $\tau = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b,c\}, \{a, b, c\}\}$. {c,d} is not GRW-open set in X, but {c} and {,d} are GRW-open sets in X, {c} $\bigcup \{d\} = \{c,d\}$

Theorem 3.6. If a set A is GRW-open in a space X, such that G is regular semi open and

int (A) \cup A^c \subset G , then G = X.

Proof. Suppose that A is GRW-open in X. Let G be regular semi open set such that

int (A) \cup A^c \subset G, A^c \subset int (A) \cup A^c \subset G, A^c is GRW-closed hence Cl*(A^c) \subset G This implies G^c \subset Cl*(A^c) - A^c, but G^c is RSO and A^c is GRW-closed ((A) \cup A^c)^c = (int (A))^c \cap A. That is

 $G^{c} \subset (int (A))^{c} - A^{c}$, Thus $G^{c} \subset cl^{*} (A)^{c} - A^{c}$, Since $(int (A))^{c} = cl (A^{c}) =$. Now G^{c} is also regular semi open and A^{c} is GRW-closed, by Remark 2.3, it follows that $G^{c} = \varphi$. Hence G = X.

The converse of the above theorem is not true in general as seen from the following example.

Example 3.5. Let $X = \{a, b, c, d\}$ with topology

 $\tau = \{X, \, \phi, \, \{a\} \, , \, \{b\} \, , \, \{a, \, b\} \, , \, \{b, \, c\} \, , \, \{a, \, b, \, c\} \, , \, \{a, \, b, \, d\} \}.$ Then RSO (X) =

 $\{X, \, \phi, \, \{a\} \, , \, \{b\} \, , \, \{c\} \, , \, \{d\} \, , \, \{a, \, b\} \, , \, \{b, \, c\} \, , \, \{c, \, d\} \, , \, \{a, \, d\} \, , \, \{b, \, d\} \, , \, \{a, \, c\} \, , \\ c\} \, , \, \{a, \, b, \, c\} \, ,$

 $\{a, b, d\}\$ and RO (X) = $\{X, \phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, d\}, \{b, c, d\}\$. Take

A = {b, c, d}. Then A is not GRW-open. However int (A) $\cup A^c = {b, c} \cup {a} =$

{a, b, c}. So for some regular semi open G, int (A) \cup A^c = {a, b, c} \subset G gives G = X, but A is not GRW-open.

Theorem 3.7. Every singleton set in a topological space is GRW-open.

Proof. Let X be a topological space. Let $x \in X$. To prove $\{x\}$ is GRW-open, it is enough to prove that $X - \{x\}$ is GRW-closed.

Let U be a RSO and $X - \{x\} \subseteq U$, but X is the only RSO such that $X - \{x\} \subseteq U$, so U=X therefore $Cl^*(X - \{x\}) \subseteq X$ hence X- $\{x\}$ is

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 ISSN 2229-5518

GRW-closed that is $\{x\}$ is GRW-open.

GRW-neighborhoods in a topological Space.

Definition 3.2. Let X be a topological space and let $x \in X$. A subset N of X is said to be a

GRW- neighborhood of x if and only if there exists a GRW-open set G such that $x \in G \subset N$.

Definition 3.3. A subset N of space X, is called a GRW- neighborhood of $A \subset X$ if and only if there exists a GRW-open set G such that $A \subset G \subset$ N.

Remark 3.1 The GRW- neighborhood N of $x \in X$ need not be a GRWopen in X.

Example 3.6 Let $X = \{a, b, c, d\}$ be with the topology $\tau = \{X, \phi\}$,

 $\{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}.$

Set of all GRW-closed sets in (X, τ) is

{ X, ϕ , {d}, {a,c}, {a, d}, {b,c},{b,d},{c,d},{a, b, c, }, {a, b,

d,{a,c,d},{b,c,d}}

Set of all GRW-open sets is

GRWO (X) = { X, ϕ {a},{b},{c},{d},{a,b},{a,c},{a, d}, {b,c},{b,d},{a,b,c} }

The set {c,d} is GRW- neighborhoods of the points c and d since the GRW-open sets {c}and {d} such that $c \in \{c\} \subset \{c,d\}$ and $d \in \{d\} \subset \{c,d\}$. However, the set {c,d} is not a GRW-open set in X.

Theorem 3.8. Every neighborhood N of $x \in X$ is a GRW- neighborhood of X.

Proof. Let N be a neighborhood of point $x \in X$. To prove that N is a GRW-neighborhood of

x. By the definition of GRW-neighborhood, there exists an open set G such that $x \in G \subset N$. As

every open set is GRW-open set G such that $x \in G \subset N$. Hence N is GRW- neighborhood

of x.

Remark 3.2. In general, a GRW- neighborhood N of $x \in X$ need not be a neighborhood of x in X, as seen from the following example.

Example 3.7 . Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.$

GRW--closed sets in (X, τ) { X, ϕ , {d}, {a, b}, {c, d}, {a, b}, {b, c, }, {a, b, d}, {a, c, d}, {b, c, d} }

GRWO(X)=GRW-open sets in X = { X, ϕ {a},{b},{c},{d},{a, b},

 $\{a,c\}, \{b, c\}, \{c, d\}, \{a,b,c\}\}$, $\{c,d\}$ is a GRW- neighborhood of c since $\{c\}$ is a GRW-open set such that $c \in \{c\} \subset \{c,d\}$, but it is not a neighborhood of c.

Theorem 3.9. If a subset N of a space X is GRW-open, then N is a GRW- neighborhood

of each of its points.

Proof. Suppose N is GRW-open. Let $x \in N$. It will be proved that N is GRW- neighborhood of x. For N is a GRW-open set such that $x \in N \subset$ N. Since x is an arbitrary point of N, it follows that N is a GRW- neighborhood of each of its points.

Remark 3.3. The converse of the above theorem is not true in general as seen

from the following example.

Example 3.8.Let $X = \{a, b, c, d\}$ be with the topology

 $\mathcal{T} = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}.$

Set of all GRW-closed sets in (X, au) is

{ X, ϕ , {d}, {a,c}, {a, d}, {b,c},{b,d},{c,d},{a, b, c, }, {a, b,

d,{a,c,d},{b,c,d}}

Set of all GRW-open sets is

GRWO (X) = { X, ϕ {a},{b},{c},{d},{a,b},{a,c},{a, d},{b,c},{b,d},{a,b,c}}

The set {c,d} is GRW- neighborhood of the points c and d since the GRW-open sets {c}and {d} such that $c \in \{c\} \subset \{c,d\}$ and $d \in \{d\} \subset \{c,d\}$. However, the set {c,d} is not a GRW-open set in X.

Theorem 3.10. Let X be a topological space. If F is a GRW-closed subset of

X, and $x \in F^c$. Prove that there exists a GRW- neighbourhood N of x such that $N \cap F = \varphi$.

Proof. Let F be GRW-closed subset of X and $x \in F^c$. Then F^c is GRW-open set

of X. So by theorem 3.9. F^c contains a GRW- neighbourhood of each of its points. Hence

there exists a GRw- neighbourhood N of x such that $N \subset F^c$. That is N $\cap F = \varphi$.

Definition 3.4. Let x be a point in a space X. The set of all GRW- neighbourhood of x

is called the GRW- neighbourhood system at x, and is denoted by GRW-N (x).

Theorem 3.11. Let X be a topological space and for each $x \in X$, Let GRW-

N (x) be the collection of all GRW- neighbourhood of x. Then the followings are true .

(i) $\forall x \in X, GRW-N(x) \neq \varphi$.

(ii) $N \in GRW-N(x) \Rightarrow x \in N$.

(iii) $N \in GRW-N(x), M \supset N \Rightarrow M \in GRW-N(x).$

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 ISSN 2229-5518

(iv) $N \in GRW-N(x)$, $M \in GRW-N(x) \Rightarrow N \cap M \in GRW-N(x)$.

(v) N \in GRW-N (x) \Rightarrow there exists M \in GRW-N (x) such that M \subset N and

 $M \in GRW-N$ (y) for every $y \in M$.

Proof. (i) Since X is a GRW-open set, it is a GRW- neighbourhood of every $x \in X$. Hence

there exists at least one GRW- neighbourhood (namely - X) for each $x \in X$.

Hence GRW-N (x) $\neq \phi$ for every x $\in X$.

(ii) If $N \in GRW-N$ (x), then N is a GRW- neighbourhood of x. So by definition of GRW- neighbourhood $x \in N$.

(iii) Let $N \in GRW$ -N (x) and $M \supset N$. Then there is a GRW-open set G such

that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is GRW- neighbourhood of x.

Hence $M \in GRW-N(x)$.

(iv) Let $N \in GRW-N$ (x) and $M \in GRW-N$ (x). Then by definition of GRW- neighbourhood

there exists GRW-open sets G1 and G2 such that $x \in G1 \subset N$ and $x \in G2 \subset M$.

Hence $x \in G1 \cap G2 \subset N \cap M \rightarrow (1)$. Since $G1 \cap G2$ is a GRW-open set, (being

the intersection of two GRW-open sets), it follows from (1) that $N \cap M$ is a

GRW- neighbourhood of x. Hence $N \cap M \in$ GRW-N (x).

(v) If N \in GRW-N (x), then there exists a GRW-open set M such that x \in M \subset

N. Since M is a GRW-open set, it is GRW- neighbourhood of each of its points. Therefore

 $M \in GRW-N$ (y) for every $y \in M$.

Theorem 3.12. Let X be a nonempty set, and for each $x \in X$, let GRW-N (x)

be a nonempty collection of subsets of X satisfying following conditions.
(i) N ∈ GRW-N (x) ⇒ x ∈ N

(ii) $N \in GRW-N (x), M \in GRW-N (x) \Rightarrow N \cap M \in GRW-N (x).$

Let τ consists of the empty set and all those non-empty subsets of G of X having the property that $x \in G$ implies that there exists an $N \in GRW-N$ (x)

such that $x \in N \subset G$, Then τ is a topology for X.

Proof. (i) $\phi \in \tau$ by definition. It will be proved that $X \in \tau$. Let x be any arbitrary element of X. Since GRW-N (x) is nonempty, there is an N \in GRW-

N (x) and so $x \in N$ by (i). Since N is a subset of X, $x \in N \subset X$. Hence

 $X \in \tau$.

(ii) Let G1 \in τ and G2 \in $\tau.$ If $x \in$ G1 \cap G2 then $x \in$ G1 and $x \in$ G2. Since

G1 \in τ and G2 \in τ , there exists N \in GRW-N (x) and M \in GRW-N (x), such

that $x\in N\subset G1$ and $x\in M\subset G2.$ Then $x\in N\cap M\subset G1\cap G2.$ But

 $N \cap M \in GRW\text{-}N$ (x) by (2). Hence $G1 \cap G2 \in \tau$.

(iii) Let $G_{\lambda} \in \tau$ for every $\lambda \in \wedge$. If $x \in \cup \{ G_{\lambda} : \lambda \in \wedge \}$,

then $x \in G_{\lambda x}$ for some $\lambda x \in \Lambda$. Since $G_{\lambda x} \in \tau$, there exists an $N \in$

GRW-N (x) such that $x \in N \subset G_{\lambda x}$ and consequently $x \in N \subset \cup \{G_{\lambda} :$

 $\lambda \in \Lambda \}.$

Hence $\cup \{ G_{\lambda} : \lambda \in \Lambda \} \in \tau$. It follows that τ is topology for X.

4. GRW-interior and GRW-closure

Definition 4.1. Let A be a subset of X. A point $x \in A$ is said to be GRWinterior point of A if A is a GRW-nbd of x. The set of all GRW-interior points of A is called the GRW-interior of A and is denoted by GRWint(A).

Theorem 4.1. If A be a subset of X. Then GRW-int(A) = $\cup \{G : G \text{ is } GRW\text{-open}, G \subseteq A\}$. **Proof.** Let A be a subset of X. $x \in GRW\text{-int}(A) \Leftrightarrow x \text{ is a } GRW\text{-interior point of } A.$ $\Leftrightarrow A \text{ is a } GRW\text{-nbd of point } x.$ $\Leftrightarrow \text{there exists } GRW\text{-open set } G \text{ such that } x \in G \subseteq A.$ $\Leftrightarrow x \in \cup \{G : G \text{ is } GRW\text{-open}, G \subseteq A\}.$ Hence $GRW\text{-int}(A) = \cup \{G : G \text{ is } GRW\text{-open}, G \subseteq A\}.$

Theorem 4.2. Let A and B be subsets of X. Then (i) GRW-int(X) = X and GRW-int(ϕ) = ϕ . (ii) GRW-int(A) \subseteq A. (iii) If B is any GRW-open set contained in A, then $B \subseteq \text{GRW-int}(A)$. (iv) If $A \subseteq B$, then GRW-int(A) \subseteq GRW-int(B). (v) GRW-int(GRW-int(A)) = GRW-int(A). **Proof.** (i) Since X and ϕ are GRW-open sets, by Theorem 2.1. GRW-int (X) = \cup {G : G is GRw-open, G \subset X} = X \cup {all GRW-open sets } = X. That isGRWint (X) = X. Since ϕ is the only GRW-open set contained in ϕ , GRW- $\operatorname{int}(\phi) = \phi$. (ii) Let $x \in \text{GRW-int}(A) \Rightarrow x$ is a GRW-interior point of A. \Rightarrow A is a GRW-nbd of x. $\Rightarrow x \in A.$ Thus $x \in \text{GRW-int}(A) \Rightarrow x \in A$. Hence GRW-int (A) $\subseteq A$. (iii) Let B be any GRW-open sets such that $B \subseteq A$. Let $x \in B$, then since B is a GRW-open set contained in A. x is a GRW-interior point of A. That is $x \in GRW$ -int (A). Hence $B \subset GRW$ -int (A). (iv) Let A and B be subsets of X such that $A \subset B$. Let $x \in$ GRW-int (A). Then

x is a GRW-interior point of A and so A is GRW-nbd of x. Since $B \supset A$,	and $x \in GRW$ -int (B).
B is	Hence x is a GRW-interior point of each of sets A and B. It follows that
also a GRW-nbd of x. This implies that $x \in$ GRW-int (B). Thus we have	A and
shown	B are GRW-nbds of x, so that their intersection $A \cap B$ is also a GRW-nbds
that $x \in$ GRW-int (A) $\Rightarrow x \in$ GRW-int (B). Hence GRW-int (A) \subset	of x.
GRW-int (B).	Hence $x \in GRW$ -int $(A \cap B)$. Thus $x \in GRW$ -int $(A) \cap GRW$ -int (B)
(v) From (ii) and (iv) GRW-int(GRW-int(A)) \subseteq GRW-int(A).	implies that
Let $x \in$ GRW-int(A) this imply A is a neighborhood of x ,so there exist a	$x \in GRW$ -int $(A \cap B)$.
GRW-open set G such that $x \in G \subseteq A$ so every element of G is an	Therefore, GRW-int $(A) \cap GRW$ -int $(B) \subset GRW$ -int $(A \cap B) \rightarrow (2)$.
GRW-interior of A ,hence $x \in G \subseteq$ GRW-int(A) which means that x is	From (1) and (2),
an GRW-interior point of GRW-int(A) that is GRW-int(A)	GRW-int $(A \cap B) = GRW$ -int $(A) \cap GRW$ -int (B).
Let A be any subset of X. By the definition of GRW-interior GRW-	Theorem 4.6. If A is a subset of X, then int $(A) \subset GRW$ -int (A).
int(A) \subset A	Proof. Let A be a subset of a space X.
by (iii) GRW-int(GRW-int(A)) \subset GRW-int(A). Hence GRW-int(GRW-	Let $x \in int(A) \Rightarrow x \in \cup \{G : G \text{ is open, } G \subset A\}$.
 int(A)) ⊂ ∩ {F : A ⊂ F ∈ GRWC(X)} = GRW-cl(A). Theorem 4.3. If a subset A of space X is GRW-open, then GRW-int (A) = A. Proof. Let A be GRW-open subset of X. GRW-int (A) ⊂ A. Also, A is GRW-open set contained in A. From Theorem 4.2. (iii) A ⊂ GRW-int (A). Hence GRW-int (A) = A. 	This imply that, there exists an open set G such that $x \in G \subset A$. This imply that, there exist a GRW-open set G such that $x \in G \subset A$, as every open set is a GRW-open set in X. This imply that $x \in \bigcup \{G : G \text{ is } GRW\text{-open}, G \subset A\}$. This imply that $x \in GRW\text{-int}(A)$. Thus $x \in \text{ int } (A)$, this imply that $x \in GRW\text{-int } (A)$. Hence int $(A) \subset$ GRW-int (A) .
The converse of the above Theorem need not be true, as seen from the following example. Example 4.1 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{a, b, c\}\}$. GRW-closed sets is $\{X, \phi, \{d\}, \{a, b\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, c, \}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, c, c\}, \{a, b, c\}, \{a, c, c\}$	Remark 4.1. Converse of the above theorem need not be true. Example 4.2 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then GRWO(X) = The power set of X. Let $A = \{a,c\}$. GRW-int (A) = $\{a, c\}$ and int (A) = $\{a\}$. It follows that int (A) \subset GRW-int (A) and GRW-int (A) $\not\subset$ int (A). Theorem 4.7. If A is a subset of X, then w-int(A) \subset GRW-int(A), where w-int(A) is given by w-int(A) = $\cup \{G : G \text{ is a w-open, } G \subset A\}$ by remark
{b, c, d}}. GRWO(X) is GRW-open sets in X = { X, ϕ_{a} , {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c} } GRW-int (A) = GRW-int ({a,d}}={a} \cup {d} = {a,d}, but {a,d} is not GRW-open set.	 2.4 Proof. Let A be a subset of a space X. Let x ∈ w-int(A) (ie) x ∈ ∪ {G ⊂ X : G is a w-open, G ⊂ A}. (ie) there exists a w-open set G such that x ∈ G ⊂ A. (ie) there exists a GRW- open set G such that, x ∈ G ⊂ A, as every w-open set is a GRW-open set in X. (ie) x ∈ ∪ {G ⊂ X : G is a GRW-open, G ⊂ A}.
Theorem 4.4. If A and B are subsets of X, then GRW-int (A) \cup GRW-int (B) \subset	(ie) $x \in GRW$ -int (A).
GRW-int (A \cup B).	Thus $x \in w$ -int (A) implies $x \in GRW$ -int (A). Hence w-int (A) \subset GRW-int (A).
Proof. For ant sub sets A and B of X , A \subset A \cup B and B \subset A \cup B. By	Remark 4.2. Containment relation in the above Theorem4.7 may be proper
Theorem 4.2.	as seen from the following example.
(iv), GRW-int (A) \subset GRW-int (A \cup B) and GRW-int (B) \subset GRW-int (A	Example 4.3 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}\}$, Then
\cup B). This	GRWO(X) =
implies that GRW-int (A) \cup GRW-int (B) \subset GRW-int (A \cup B).	P(X) and WO(X) = {X, $\phi, \{a\}}$. Let $A = \{a, b\}$. Then GRW-int(A) = {a,
Theorem 4.5. If A and B are subsets of space X, then GRW-int $(A \cap B) =$	and w-int (A) = {a}. It follows that w-int (A) ⊂ GRW-int (A) and GRW-
GRW-int $(A) \cap$ GRW-int (B).	int (A) \subset w-int(A).
Proof. For ant sub sets A and B of X , $A \cap B \subset A$ and $A \cap B \subset B$. By	Theorem 4.8. If A is a subset of X, then GRW-int (A) ⊂ g-rg-int (A),
Theorem	where
2.2. (iv), GRW-int $(A \cap B) \subset$ GRW-int (A) and GRW-int $(A \cap B) \subset$	g-rg-int (A) is given by g-rg-int (A) = U {G ⊂ X : G is a g-rg-open, G ⊂
GRW-int (B).	A}.
This implies that GRW-int $(A \cap B) \subset$ GRW-int $(A) \cap$ GRW-int $(B) \rightarrow$	Proof. Let A be a subset of a space X.
(1).	Let x ∈ GRW-int (A) = U {G ⊂ X : G is a GRW-open, G ⊂ A}.
Again, let $x \in$ GRW-int $(A) \cap$ GRW-int (B). Then $x \in$ GRW-int (A)	(i e) there exists a GRW-open set G such that x ∈ G ⊂ A.

(i e) there exists a g-rg-open set G such that x ∈ G ⊂ A, as every GRW-open set is g-rg-open set in X.
(i e) x ∈ ∪ {G ⊂ X : G is a g-rg-open, G ⊂ A}.
(i e) x ∈ g-rg-int (A).
Thus x ∈ GRW-int (A) implies that x ∈ g-rg-int (A).
Hence GRW-int (A) ⊂ g-rg-int (A).

GRW-closure in a space X .

Definition 4.2. Let A be a subset of a space X. The GRW-closure of A is defined as the intersection of all GRW-closed sets containing A. GRW-cl (A) = \cap {F : A \subset F \in GRWC (X)}.

Theorem 4.9. If A and B are subsets of a space X .Then

(i) GRW-cl (X) = X and GRW-cl (ϕ) = ϕ . (ii)A \subset GRW-cl (A).

(ii) If B is any GRW-closed set containing A, then GRW-cl (A) \subset B.

(iv) If $A \subset B$ then GRW-cl (A) \subset GRW-cl (B).

(v) GRW-cl(A) = GRW-cl(GRW-cl(A)).

Proof. (i) By the definition of GRW-closure, X is the only GRW-closed set

containing X. Therefore GRW-cl (X) = Intersection of all the GRW-closed sets

containing X. = \cap {X} = X. That is GRW-cl (X) = X. By the definition of GRW-closure, GRW-cl (ϕ) = Intersection of all the GRW-closed sets containing φ

= \cap any GRW-closed sets containing $\phi = \phi$. That is GRW-cl (ϕ) = ϕ .

(ii) By the definition of GRW-closure of A, it is obvious that $A \subset$ GRW-cl (A).

(iii) Let B be any GRW-closed set containing A. Since GRW-cl (A) is the intersection

of all GRW-closed sets containing A, GRW-cl (A) is contained in every GRW-closed set containing A. Hence in particular GRW-cl (A) \subset B.

(iv) Let A and B be subsets of X such that $A \subset B$. By the definition of GRW-

closure, GRW-cl (B) = \cap {F : B \subset F \in GRWC (X)}. If B \subset F \in GRWC (X),

then GRW-cl (B) \subset F. Since A \subset B, A \subset B \subset F \in GRWC (X),

 $\label{eq:GRW-cl} \begin{array}{l} (A) \subset F. \mbox{ Therefore } GRW\mbox{-}cl \ (A) \subset \cap \{F: B \subset F \in \mbox{ } GRW\mbox{-} (X) \} \\ = GRW\mbox{-} \end{array}$

cl (B). That is GRW-cl (A) \subset GRW-cl (B).

(v) Let A be any subset of X. By the definition of GRW-closure, GRW-cl (A) =

 $\cap \{F : A \subset F \in GRWC (X)\}, \text{ If } A \subset F \in GRWC (X), \text{ then } GRW\text{-}cl (A) \subset F.$

Since F is GRW-closed set containing GRW-cl (A), by (iii) GRW-cl(GRW-cl(A)) \subset F.

Hence GRW-cl(GRW-cl(A)) $\subset \cap \{F : A \subset F \in GRWC (X)\} = GRW-cl$ (A). That

is GRW-cl(GRW-cl(A)) = GRW-cl(A).

Theorem 4.10. If $A \subset X$ is GRW-closed, then GRW-cl (A) = A.

Proof. Let A be GRW-closed subset of X. By the definition of GRWcl(A) ,A \subset GRW-cl (A). Also A \subset A and A is GRW-closed. By Theorem 4.9. (iii) GRW-cl (A) \subset A. Hence

GRW-cl(A) = A.

The converse of the above Theorem need not be true as seen from the following example.

Example 4.4

Let $X = \{a, b, c, d\}$

with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.$

GRW-closed sets is

{ X, ϕ , {d}, {a, b}, {c, d}, {a,d}, {b,d}, {a, b, c, }, {a, b, d}, {a, c, d},

 $\{b, c, d\}\},\$

GRWO(X)=GRW-open sets in X = { X, ϕ {a},{b},{c},{d},{a, b},

 $\{a,c\},\{b,c\},\{c,\},\{a,b,c\}\}$

GRW-cl (A) =GRW-cl ($\{a,c\}\}$ = $\{a,b,c\} \cap \{a,c,d\}$ = $\{a,c\}$, but $\{a,c\}$ is not GRW-closed set.

Theorem 4.11. If A and B are subsets of a space X, then GRW-cl (A \cap B) \subset

GRW-cl (A) \cap GRW-cl (B).

Proof. Let A and B be subsets of X. Clearly $A \cap B \subset A$ and $A \cap B \subset B$. By Theorem 2.9.(iv), GRW-cl $(A \cap B) \subset$ GRW-cl (A) and GRW-cl $(A \cap B) \subset$ GRW-

cl (B). Hence GRW-cl (A \cap B) \subset GRW-cl (A) \cap GRW-cl (B).

Theorem 4.12. If A and B are subsets of a space X, then GRW-cl (A \cup B) =

GRW-cl (A) U GRW-cl (B).

Proof. Let A and B be subsets of X. Clearly $A \subset A \cup B$ and $B \subset A \cup B$. Hence GRW-cl (A) \cup GRW-cl (B) \subset GRW-cl (A \cup B) \rightarrow (1). Now to prove GRW-cl (A \cup B) \subset GRW-cl (A) \cup GRW-cl (B). Let $x \in$ GRW-cl (A \cup B) and suppose

 $x \notin$ GRW-cl (A) UGRW-cl (B). Then there exists GRW-closed sets A₁ and B₁ with

 $A \subset A_1$, $B \subset B_1$ and $x \notin A_1 \cup B_1$. $A \cup B \subset A_1 \cup B_1$ and $A_1 \cup B_1$ is GRW-closed set by the Remark 2.5 such that $x \notin A_1 \cup B_1$. Thus

 $x \notin GRW$ -cl(A \cup B) which is a contradiction to $x \in GRW$ -cl(A \cup B). Hence

 $GRW-cl(A \cup B) \subset GRW-cl(A) \cup GRW-cl(B) \rightarrow (2)$. From (1) and (2),

 $GRW-cl(A \cup B) = GRW-cl(A) \cup GRW-cl(B).$

Theorem 4.13. For an $x \in X$, $x \in \text{GRW-cl}(A)$ if and only if $V \cap A \neq \phi$ for

every GRW-open sets V containing x.

Proof. Let $x \in X$ and $x \in GRW$ -cl(A). To prove $V \cap A \neq \phi$ for every GRW-open

set V containing x. Proof by contradiction. Suppose there exists a GRW-open set V containing x such that $V \cap A = \phi$. Then $A \subset X-V$ and X-V is GRW-closed. GRW-cl(A) $\subset X - V$. This shows that $x \notin$ GRW-cl(A), which is contradiction. Hence $V \cap A \neq \phi$ for every GRW-open set V containing x.

Conversely, let $V \cap A \neq \phi$ for every GRW-open set V containing x. To prove

 $x \in GRW$ -cl(A).Proof by contradiction. Suppose $x \notin GRW$ -cl(A). Then there exists a GRW-closed subset F containing A such that $x \notin F$, which implies that $x \in X - F$ and X - F is GRW-open. Also $(X - F) \cap A \neq \phi$, which is a contradiction. Hence $x \in GRW$ -cl(A).

Theorem 4.14. If A is subset of a space X, then GRW- $cl(A) \subset cl(A)$ and GRW- $cl(A) \subset cl^*(A)$

Proof. Let A be a subset of a space X. By the definition of closure cl(A), GRW-cl(A) and $Cl^*(A)$

GRW- $cl(A) \subset cl(A)$ and GRW- $cl(A) \subset cl^*(A)$.

Remark 4.3. Containment relation in the above Theorem 4.14., may be proper

as seen from following example.

Example 4.5 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$.

Then

 $GRW\text{-}cl(\{a\})=\{a\}$ and $cl(\{a\})=X.$ It follows that $GRW\text{-}cl(\{a\})\subset cl(\{a\})$ and

 $GRW-cl(\{a\}) _= cl(\{a\}).$

Theorem 4.15. If A is subset of a space X, then $\text{GRW-cl}(A) \subset \text{w-cl}(A)$, where

w-cl(A) is given by w-cl(A) = $\bigcap \{F \subset X : A \subset F \text{ and } F \text{ is w-closed set in } X\}.$

Proof. Let A be a subset of X. By definition of w-closure w-cl(A) = \cap {F \subset

 $X : A \subset F$ and F is w-closed set in X}. If $A \subset F$ and F is w-closed subset of

X, then $A \subset F \in GRWC(X)$, because every w-closed is GRW-closed subset in

X. That is GRW-cl(A) \subset F. Therefore GRW-cl(A) $\subset \cap \{F \subset X : A \subset F \text{ and } F$

is w-closed} = w-cl(A). Hence GRW-cl(A) \subset w-cl(A).

Remark 4.4. Containment relation in the above Theorem 4.15. may be proper

as seen from following example.

Example 4.6 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$.

Let $A = \{a\}$. Then GRW-cl(A) = $\{a\}$ and w-cl(A) = $\{a, c\}$. That is GRW-cl(A) \subset w-cl(A) and w-cl(A) $\not\subset$ GRW-cl(A).

Theorem 4.15: If τ_{GRW} is a collection of subsets of X such that $\tau_{GRW} = \{U \subset X : GRW\text{-}cl(U^C)\} = U^C\}$, then τ_{GRW} is a topology.

Proof :

(i) Obviously ϕ ,X $\in \tau_{\text{GRW}}$

(ii) If A,B $\in \, \tau_{GRW}$ then A \cap B $\, \in \, \tau_{GRW}$ by the theorem 4.12.

Let $A_{\lambda} \in \tau_{GRW}$ for some $\lambda \in \Lambda$, then $\bigcup (A_{\lambda} : \lambda \in \Lambda) \in \tau_{GRW} \sin ce$

 $GRW - Cl(\bigcup (A_{\lambda} : \lambda \in \Lambda))^{c} = (\bigcup (A_{\lambda} : \lambda \in \Lambda))^{c}$ Using the theorem 4.11.

Hence τ_{GRW} forms a topology on X generated by GRW-closure.

Theorem 4.16. For any topology τ on X, $\tau \subset \tau_W \subset \tau_{GRW}$, where $\tau_w = \{U \subset$

 $X : w-cl(U^C) = U^C Remark 2.6$

Proof. $\tau \subset \tau_W$ from Remark 2.6. To prove $\tau_W \subset \tau_{GRW}$. Let $U \in \tau_W$

which implies w-cl(U^c) = U^c, it follows that U^c is a w-closed set. Now U^c is

GRW-closed, as every w-closed set is GRW-closed and so GRW-cl(U^c) = U^c . That

is $U \in \tau_{GRW}$ and so $\tau_w \subset \tau_{GRW}$. Hence $\tau \subset \tau_W \subset \tau_{GRW}$.

Theorem 4.18. Let A be any subset of X. Then

(i) $(\text{GRW-int}(A))^{C} = \text{GRW-cl}(A^{C})$ (ii) $\text{GRW-int}(A) = (\text{GRW-cl}(A^{C}))^{C}$ (iii) $\text{GRW-cl}(A) = (\text{GRW-int}(A^{C}))^{C}$.

Proof. Let $x \in (GRW-int(A))^C$. Then $x \notin GRW-int(A)$. That is every GRW-

open set U containing x is such that $U \not\subset A$. That is every GRW-open set U containing x is such that $U \cap A^c \neq \phi$. By Theorem 4.13., $x \in$ GRW-cl(A^c), therefore

 $(GRW-int(A))^{c} \subset GRW-cl(A^{c})$. Conversely, let $x \in GRW-cl(A^{c})$. Then

by Theorem 4.13., every GRW-open set U containing x is such that U $\cap \mathbf{A}^{\mathrm{c}} \neq \pmb{\phi}$.

That is every GRW-open set U containing x is such that U $\not\subset A$. This implies

by Definition of GRW- interior of A, $x \notin GRW$ -int(A). That is $x \in (GRW$ -int(A))^c

and GRW-cl(A^c) \subset (GRW-int(A))^c. Thus (GRW-int(A))^c = GRW-cl(A^c). (ii) Follows by taking complements in (i). (iii) Follows by replacing A by A^c in (i).

References

[1] I. Arockiarani, Studies on Generalizations of Generalized Closed Sets and

Maps in Topological Spaces, Ph. D Thesis, Bharathiar University, Coimbatore,

(1997).

[2] S. P. Arya and R. Gupta, On Strongly Continuous Mappings, Kyungpook

Math., J. 14(1974), 131-143.

- [3] K. Balachandran, P. Sundaram and H. Maki, On Generalized Continuous
- Maps in Topological Spaces, Mem. I ac Sci. Kochi Univ. Math., 12(1991),5-13.

[5] P. Bhattacharyya and B. K. Lahiri, Semi-generalized Closed Sets in Topology,

Indian J. Math., 29(1987), 376-382.

- [6]Benchalli S.S and Wali,R.S., rw-cloes sets,Bull.Malays.Math.Sci.Soc.,(2) 30(2)(2007),99-110.
- [7] Cameron, d e ., Properties of S-closed spaces, Proc. Amer Math. Soc., 72 (1978), 581-586

[8] R. Devi, K. Balachandran and H. Maki, On Generalized α -continuous Maps, Far. East J. Math. Sci. Special Volume, part 1 (1997), 1-15.

- [9] W. Dunham, A New Closure Operator for non-T1 Topologies, Kyungpook
- Math. J., 22(1982), 55-60.
- [10] Y. Gnanambal, On Generalized Pre-regular Closed Sets in Topological
- Spaces, Indian J. Pure Appl. Math., 28(1997), 351-360.
- [11] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [12] H. Maki, J. Umehara and T. Noiri, Every Topological Space is Pre-T12,

Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 17(1966), 33-42.

 $\left[13\right]$ H. Maki, R. Devi and K. Balachandran, Generalized $\alpha\text{-closed}$ Sets in

Topology, Bull. Fukuoka Univ. Ed. Part-III, 42(1993), 13-21.

444 A. Vadivel and K. Vairamanickam

[14] H. Maki, R. Devi and K. Balachandran, Associated Topologies of Generalized

 α -closed Sets and α -generalized Closed Sets Mem. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.

- [15] S. R. Malghan, Generalized Closed Maps, J. Karnatak Univ. Sci., 27(1982), 82-88.
- [16] A. S. Mashhour, M. E. Abd. EI-Monsef and S. N. EI-Deeb, On Precontinuous

Mappings and Weak Pre-continuous Mappings, Proc. Math.Phy. Soc. Egypt., 53(1982), 47-53.

[17] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological

Spaces, Ph. D., Thesis, Bharathiar University, Coim- batore(1999).

[18] O. Njastad, On Some Classes of Nearly Open Sets, Pacific J. Math., 15(1965), 961-970.

- [19] N. Palaniappan and K. C. Rao, Regular Generalized Closed Sets, Kyungpook, Math. J., 33(1993), 211-219.
- [20] J. K. Park and J. H. Park, Mildly Generalized Closed Sets, Almost $\ensuremath{\mathsf{JSER}}\xspace$ 2012

Normal

and Mildly Normal Spaces, Chaos, Solutions and Fractals 20(2004), 1103-1111.

[21] Pushpalatha ,Rajarubi ON GRW-CLOSED SETS (GENERALIZED REGULAR WEAKLY CLOSED SETS IN A TOPOLOGICAL SPACE) International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 4 No. III (August, 2010), pp. 259-276

[22] M. Sheik John, On w-closed Sets in Topology, Acta Ciencia Indica,4(2000), 389-392.

[23] M. Stone, Application of the Theory of Boolean Rings to General Topology,

Trans. Amer. Math. Soc., 41(1937), 374-481.

Authors (1) P.Rajarubi , Associate Professor, Department of Mathematics, Emerald Heights College for women, Ootacamand, India.(e-mail:prabhurubi@gmail.com) Mobile :9443560399 (2) N Nagaveni , Associate Professor, Department of Mathematics, Coimbatore Institute of Technology Coimbatore, India